

# GPU-based high-performance computing for urban seismic damage prediction and visualization

### Xinzheng LU

# Institute of Disaster Prevention and Mitigation Department of Civil Engineering, Tsinghua University Beijing 100084, P.R. China

The Sixth Kwang-Hua Forum, Shanghai, China, 2014





- Introduction
- Program Framework
- Performance Benchmark
- Case Study
- Realistic Visualization
- Conclusions



- China is subjected to most serious earthquake disaster threats in the world
- Earthquake occurs in cities will cause tremendous casualties and damage
- Scientific prediction of urban seismic damage is an important task



Beichuan City, 2008



Tangshan City, 1976



### Methods for urban seismic damage simulation

- Based on probability matrices
  - ATC-13
- Based on capacity curve and response spectrum
  - HAZUS, AEBM



Spectral Displacement (inches)

ATC-13 Earthquake Damage Evaluation Data for California



- Problems:
- SDOF model
- Pushover analysis
- Demand Spectra

• • • • •



# "Nonlinear Time History Analysis of a City!"







### Single structure

- Detailed structural information
- One building

# 

### Urban region

- Limited structural information
- Hundreds of thousands of buildings

() 清華大学 Tsinghua University

University of Tokyo
 Integrated Earthquake Simulation



- Supercomputer with traditional CPU platform
  - Expensive
  - Complex
  - High maintenance costs



How...

Higher

performance



### GPU (Graphic Processing Unit)





Comparison between the CPU and the GPU

CPU: 2~8 cores

GPU: hundreds/thousands of cores

# GPU-powered THA of Single Bld.



### Fiber beam element + Multi-layer shell element



Collapse simulation of Z15 in Beijing (H=550m)

Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes, *Earthquake Engineering & Structural Dynamics*, 2013, 42(5)

#### Collapse simulation of Shanghai Tower (H=630m)

Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. *Science China Technological Sciences*, 2011, 54(10)

# GPU-powered THA of Single Bld.



| Platform | Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Price                                                                                                | Solver                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------|---------------------------|
| CPU      | Intel Core i7-3970X 3.5GHz (Fastest CPU in the market)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | US\$2406                                                                                             | SparseSYM of<br>OpenSees  |
| GPU      | Intel Core i7-4770X 3.4GHz<br>&NVIDIA Geforce GTX Titan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | US\$2307                                                                                             | CuSPSolver of<br>OpenSees |
|          | $ \begin{pmatrix} \mathbf{i} \\ \mathbf{i} \\ \mathbf{j} \\ \mathbf{j}$ | 14 | 27.5<br>CPU CuSPSol<br>140<br>120<br>100<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ver<br>GPU<br>400gal      |

# Region



### The advantages for using GPU

| Seismic computing for<br>normal buildings                |                   | Computing features of GPU                       |
|----------------------------------------------------------|-------------------|-------------------------------------------------|
| Simple model, few degree-of freedom in a single building | $\Leftrightarrow$ | Relatively weak performance<br>of a single core |
| No interaction between buildings                         | $\leftrightarrow$ | Fewer data exchange                             |
| A huge number of buildings                               | $\Leftrightarrow$ | Suitable for parallel computing                 |







#### 1. Building Models



# **Building Models**



### Computational Model

- Multi-story concentrated-mass shear (MCS) model
  - Moderate workload
  - Consider higher-order vibration modes & velocity pulses
  - Damage locations on different stories can be obtained
- Suitable for GPU computing



# **Building Models**



### Inter-story hysteretic model

- Backbone curve
  - Trilinear, 5 parameters
- Hysteretic model
  - Modified-Clough
  - Bilinear elasto-plastic
  - Pinching





# **Building Performance Database**



- For Regular Buildings
  - Based on the HAZUS performance database
  - Parameter Set Selection
    - According to building macro-parameters
      Structural types, Numbers of stories, Construction Period
    - 19 building types proposed in HAZUS are adopted



# **Building Performance Database**



For Special Buildings:



# **Building Performance Database**



### Validation (six-story RC frame)





#### Refined FE model



#### Top displacement





Inter-story drift

# **Parallel Computing Method**





# Performance Benchmark



### CPU/GPU cooperative vs. CPU only

- 1,024 buildings, numbers of stories and structural types are random generated
- Earthquake record: El Centro, 40 s, PGA: 200 cm/s<sup>2</sup>
- Time of data input and output is not included

| Platforms              | Hardware                                                   | Compliers                                   |
|------------------------|------------------------------------------------------------|---------------------------------------------|
| CPU                    | Intel Core i3 530 @2.93GHz & DDR3 4G 1333MHz.              | Microsoft Visual C++ 2008 SP1               |
| GPU/CPU<br>cooperative | Intel Celeron E3200 @ 2.4GHz & NVIDIA GeForce GTX 460 1GB. | Microsoft Visual C++ 2008 SP1 &<br>CUDA 4.2 |

# The two platforms have similar prices

# Performance Benchmark

# Weak-scaling benchmarks for the two platforms <u>39x</u> speedup when computing 1024 buildings





# A medium-sized urban area in China 4,225 buildings







# Local view **Desktop Computer** 4,255 buildings Damage on 40 s time-history analysis different stories Accomplished in **216** s Damage state: ■ Slight □ Moderate □ Extensive ■ Complete ■ None



### Local view

 Peak acceleration on different stories



() 清華大学 Tsinghua University



MCS model: velocity pulses can be considered

# **Visualization problem**



- Realistic visualization
  Rescue and transportation planning
- Building collapse
- MCS model cannot simulate process of building collapse.



MCS model (Criterion of collapse) Real earthquake disaster (Include building collapse)

# **Physics Engine Solutions**

() Tsinghua University

- Physics engine
- A computer program for real-time dynamic calculation, good at multi-body dynamics.
- > Widely used in computer graphics, video games and film.



Example of physics engine

Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine, Natural Hazards, 2014

# **Physics Engine Solutions**





Finite element results + physics engine based-debris

Physics engine-driven visualization of deactivated elements and its application in bridge collapse simulation, Automation in Construction, 2013



### Integrate MCS model and physics engine



The process of collapse simulation in physics engine

### **Collapse simulation**





High-efficient collapse simulation.

# Application for Tsinghua Campus





## Conclusions





GPU-based high-performance computing for urban seismic damage prediction and visualization



With Texture

Fast



Disp. Contour

Cheap

High-fidelity



Damage State

Realistic



Nonlinear time history analysis:

from mega-structures to cities?



# Thank you for your attention!