FRP-
混凝土界面行为研究

 

 

(申请清华大学工学博士学位论文)

 

 

 

 

 

 

培养单

清华大学土木工程系

 
 

土木工程

 
 

研究

陆 新 征

   
 

指导教

江 见 鲸

 

 
 
 

○○四年十

 

Studies on FRP-Concrete Interface

Dissertation Submitted to

Tsinghua University

in partial fulfillment of the requirement

for the degree of

Doctor of Engineering

 

by

Xin-zheng Lu

( Civil Engineering )

 

Dissertation Supervisor

:

Professor Jian-jing Jiang

 
 

October, 2004

 

摘 

FRP-混凝土之间的界面力学行为及剥离破坏是FRP加固混凝土技术应用的关键基础问题,也是难点问题。本文对FRP-混凝土界面的三种主要剥离破坏形式:面内剪切剥离、受弯加固剥离和受剪加固剥离进行了系统的研究,提出了相应的数值计算模型,深入分析并揭示了FRP-混凝土的界面剥离破坏机理。基于对界面剥离破坏机理的充分认识,根据数值分析结果和试验结果,建立了界面粘结-滑移本构模型及受弯加固和受剪加固的剥离承载力的计算模型,并进一步提出了实用简化设计公式。与所收集的大量试验结果对比计算表明,本文的建议对FRP-混凝土界面行为模拟更为合理,所建议的设计公式优于现有文献公式,为安全、经济、合理地应用FRP加固混凝土结构技术提供了设计理论和方法。本文的主要研究工作和创新成果有:

(1)    首先针对面内剪切试验,采用所建议的混凝土非共轴转动裂缝模型,对FRP-混凝土界面行为进行了初步分析。为使数值分析更为稳定可靠,又进一步提出了精细单元有限元模型,深入研究了FRP-混凝土界面行为。并基于数值分析结果,提出了FRP-混凝土界面粘结-滑移本构模型及剥离承载力计算公式,与大量试验结果对比吻合良好;

(2)    基于精细单元有限元模型分析,得到了受弯加固剥离中的界面粘结-滑移关系,并提出了考虑裂缝宽度的双剥离破坏准则。利用无网格法,将传统混凝土有限元分析中的弥散裂缝模型和分离裂缝模型结合起来,提出了基于无网格法的组合裂缝模型,验证了双剥离破坏准则的正确性;

(3)    基于以上界面粘结-滑移关系和双剥离破坏准则,开发了相应的界面单元模型,使得受弯剥离可以通过普通钢筋混凝土有限元程序加以模拟。与大量试验对比表明,分析结果和试验结果吻合良好。在此基础上,根据有限元分析得到的界面粘结应力分布并加以简化处理,得到受弯剥离承载力的实用计算公式,与大量试验结果对比表明,计算结果与试验吻合良好,且过程简便;

(4)    根据受剪加固剥离问题的有限元分析和试验分析,讨论了FRP应力分布和斜裂缝宽度的关系,根据典型斜裂缝宽度分布规律和粘贴加固方式,提出了8种不同的受剪剥离简化计算模型,并讨论了受剪剥离的机理。基于最不利斜裂缝模型的分析结果,提出了受剪剥离承载力的计算公式。与大量试验结果对比吻合良好;

关键词:混凝土,加固,FRP,界面剥离,非线性分析


Abstract

External bonding of fiber reinforced polymer (FRP) plates or sheets has emerged as a popular method for the strengthening of reinforced concrete (RC) structures. In this strengthening method, the performance of the FRP-to-concrete interface in providing an effective stress transfer is of crucial importance. Indeed, a number of failure modes in FRP-strengthened RC members are directly caused by debonding of the FRP from the concrete. Therefore, for the safe and economic design of externally bonded FRP systems, a sound understanding of the behavior of the FRP-to-concrete interface needs to be developed.

In this thesis, the debonding failure behavior of three major FRP-concrete systems is investigated in detail: debonding in direct-pull tests, debonding in flexurally-strengthened beams and debonding in shear-strengthened beams. For each case, a systematic study is presented, which includes the numerical modeling of the FRP-strengthened structure and the detailed clarification of the debonding failure mechanism. Furthermore, the numerical results are verified and combined with available experimental results to establish interfacial bond-slip models and design models for debonding failures in flexurally- and shear-strengthened RC members. The proposed design models represent substantial improvements to existing models as evidenced through comparisons with existing test data.

The major contributions of the work presented in this thesis are listed as follows:

(1)   A finite element (FE) method for the simulation of direct-pull tests based on the non-coaxial rotating angel crack model (RACM) is first presented. FE results obtained using this method provides a preliminary clarification of the debonding process and mechanism. Next, a meso-scale FE model for debonding simulation is presented, which is capable of producing more reliable and detailed numerical results. The interfacial behavior is discussed in detail based on these meso-scale FE element results. In addition, new bond-slip models and bond strength models are proposed based on results from a numerical parametric study. The predictions of the proposed models are shown to be in close agreement with available test results.

(2)   An interfacial bond-slip model for use in the FE simulation of debonding failures in flexurally-strengthened RC beams (referred to as flexural debonding for brevity) developed from meso-scale FE results is described. A composite crack model based on the meshless method is also proposed in which the conventional smeared crack approach and the discrete crack approach for concrete are combined. Results from the composite crack model provides the basis of a dual debonding criterion for flexural debonding failures.

(3)   With the new bond-slip model and the novel dual debonding criterion, an interface element for flexural debonding failures is proposed so that flexural debonding can be accurately predicted with the conventional FE approach for concrete. The numerical predictions are compared with the results of 45 test beams and a good agreement is observed. Furthermore, based on the interfacial bond stress distribution from the FE model, and with some simplifications, a design model for flexural debonding is proposed. The predictions of the proposed design model agree well with the test results.

(4)   Based on both test results and numerical results, the relationship between the stress distribution in the FRP strips for shear strengthening of RC beams and the variation of the width of the critical shear crack is examined. Three typical width variations of the critical shear crack are then proposed, leading to eight simplified computational models for debonding failures in shear-strengthened concrete beams for different strengthening schemes. The debonding mechanism in shear-strengthened RC beams is discussed and a design model for shear strengthening is proposed based on the lower bound predictions of these eight computational models. This design model is compared and shown to agree well with the test results.

Key words: Concrete; Strengthening; FRP; Interfacial debonding; Nonlinear analysis


目 

 

I

ABSTRACT英文摘要

II

 

IV

第一章 绪论

1

1.1 FRP加固混凝土结构技术及研究概况

1

1.2 本课题研究目的、内容和路线

3


第二章 FRP-混凝土界面力学性能研究综述

5

2.1 引言

5

2.2 FRP-混凝土界面力学性能的试验研究

7

2.2.1 试验方案

7

2.2.2 试验结果

9

2.2.3 其他试验研究

11

2.3 FRP-混凝土界面数值模拟研究

12

2.4 FRP-混凝土界面的剥离承载力

13

2.4.1影响参数

13

2.4.2 界面剥离承载力模型

14

2.4.3不同剥离承载力模型对关键影响因素的考虑对比

17

2.5 FRP-混凝土界面粘结性能本构模型

18

2.5.1 概述

18

2.5.2 现有的本构模型

19

2.6 小结

23


第三章 基于宏观单元的界面力学性能的数值模拟

25

3.1 FRP-混凝土界面有限元分析的技术难点

25

3.2 非共轴转动裂缝混凝土本构模型

28

3.2.1 概述

28

3.2.2 强度准则

29

3.2.3 应力应变关系

30

3.2.4 裂缝模型和裂面剪力传递系数

30

3.3 有限元分析结果

32

3.3.1 面内剪切试验的有限元模型

32

3.3.2 参数讨论

33

3.3.4 模型验证

35

3.4 界面力学性能和剥离机理的讨论

38

3.5 小结

39


第四章 基于精细单元的界面力学性能的数值模拟

41

4.1 宏观单元模型的主要缺点

41

4.2 精细单元有限元模型

42

4.2.1 概述

42

4.2.2 FRP片材模型

43

4.2.3 混凝土模型

44

4.3 参数讨论

48

4.3.1 分析试件

48

4.3.2 裂面剪力模型

48

4.3.3 混凝土受拉软化模型

49

4.3.4 混凝土单元尺寸影响

50

4.3.5 对有限元模型的验证

51

4.4 界面剥离破坏过程

53

4.5 小结

58


第五章 界面粘结-滑移本构关系

59

5.1 引言

59

5.2 由精细单元模型得到的局部粘结-滑移关系

59

5.3 建议的粘结-滑移本构模型

61

5.3.1 精确模型

61

5.3.2 简化模型

65

5.3.3 双线性模型

65

5.4 建议的承载力模型

66

5.5 界面模型与试验结果对比

68

5.5.1 剥离承载力模型对比

68

5.5.2 本构模型对比

72

5.6 小结

79


第六章 抗弯加固剥离研究综述

80

6.1 引言

80

6.2 抗弯加固剥离试验研究

82

6.3 抗弯加固剥离数值分析

84

6.4 抗弯加固剥离承载力设计方法

85

6.4.1 概述

85

6.4.2 ACI 440建议的公式

86

6.4.3 -叶建议的公式

87

6.4.4 Teng等建议的公式

87

6.4.5 JSCE建议的公式

88

6.4.6 fib建议的公式

88

6.4.7 不同设计公式和计算结果的对比

89

6.5 小结

92


第七章 抗弯加固剥离的分析

94

7.1 引言

94

7.2 受弯剥离破坏试验研究

95

7.2.1 试验方案

95

7.2.2 试验结果

96

7.3 基于精细单元的有限元分析

97

7.3.1 精细单元有限元模型

97

7.3.2 界面粘结-滑移关系

99

7.3.3 双重剥离破坏准则

100

7.4 基于组合裂缝模型的数值分析

101

7.4.1 概述

101

7.4.2 基于无网格法的组合裂缝模型

102

7.4.3 计算模型和结果

105

7.4.4 小结

110

7.5 基于普通单元的有限元分析

110

7.5.1 概述

110

7.5.2 用户自定义界面单元

111

7.5.3 其他单元模型和本构模型

112

7.6 有限元分析结果与试验结果对比

114

7.6.1 典型试件对比

114

7.6.2 大量试验验证

120

7.6.3 参数讨论

124

7.7 受弯剥离承载力设计方法

124

7.7.1 简化的界面粘结应力分布

124

7.7.2 计算模型

126

7.8与试验结果对比

128

7.8.1 不同计算模型和试验结果对比

128

7.8.2 考虑保证率的设计公式

131

7.8.3 均布荷载情况

132

7.9 小结

132


第八章 抗剪加固剥离研究综述

134

8.1 引言

134

8.2 抗剪加固剥离的试验研究

135

8.2.1 U型粘贴

135

8.2.2 侧面粘贴

136

8.3 抗剪加固的剥离承载力公式

136

8.3.1 概述

136

8.3.2 ACI-440建议公式

137

8.3.3欧洲设计规范建议公式

138

8.3.4 英国设计规范建议公式

139

8.3.5 加拿大设计规范建议公式

140

8.3.6 日本设计规范建议公式

141

8.3.7 Chen & Teng公式

141

8.3.8 谭壮公式

143

8.3.9 --陆公式

143

8.3.10 U型加固计算值与试验值对比

143

8.3.11 侧面粘贴加固计算值与试验值对比

146

8.4 抗剪加固剥离的机理分析

148


第九章 抗剪加固剥离的分析

150

9.1 引言

150

9.2 试验研究

150

9.2.1 试验方案

150

9.2.2 试验结果

152

9.3 有限元分析

153

9.3.1 有限元模型

153

9.3.2 计算结果

154

9.4 FRP应力分布规律

158

9.4.1 斜裂缝形状的简化

158

9.4.2 滑移场模型

159

9.4.3 计算模型

160

9.4.4 计算结果

163

9.5 设计公式

169

9.6 小结

177


第十章 结论

178

参考文献

181

附录

192

致谢及声明

205

个人简历、在学期间的研究成果及发表的论文

206


参考文献

[1]  Meier U., Deuring M., Meier H., Schwegler G., CFRP bonded sheets,  A. Nanni (Ed.), Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications Elsevier Science, 1993.

[2]  ACI, ACI440.2R-02 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: American Concrete Institute, 2002.

[3]  Canada ISIS, Strengthening reinforced concrete structures with externally-bonded fiber reinforced polymers, in: Design Manual No. 4., 227 Engineering Building, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, 2001, 33-38.

[4]  fib, Externally bonded FRP reinforcement for RC structures, in: Bulletin 14, 2001, 43-45.

[5]  JSCE, Recommendations for upgrading of concrete structures with use of continuous fiber sheets, 2000, 30-34.

[6]  Committee Concrete Society, Design guidance for strengthening concrete structures using fiber composite materials, in: Technical Report No. 55., Century House, Telford Avenue, Crowthorne, Berkshire RG45 6YS, UK, 2000, 40-42.

[7]  Teng J. G., Chen J. F., Smith S. T., Lam L., Behaviour and strength of FRP-strengthened RC structrues: a state-of-the-art review, Proc. The Institution of Civil Engineers-Structures and Buildings. 2003. 156 (1). 51-62.

[8]  Teng J. G., Chen J. F., Simth S. T., Lam L., FRP-strengthened RC structures, UK: John Wiley & Sons, 2002.

[9]  Neubauer U., Rostasy F. S., Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model, Proc. of 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, Farmington Hills, Michigan, 1999. 369-382.

[10] 碳纤维片材加固混凝土结构技术规程, 北京: 中国计划出版社, 2003.

[11]  Ngo D., Scordelis A.C., Finite Element Analysis of Reinforced Concrete Beams, Journal of ACI. 1967. 64 (3). 152-163.

[12] 江见鲸, 钢筋混凝土结构非线性有限元分析, 西安: 陕西科学技术出版社, 1994.

[13] ASCE, State-of-the-art report on finite element analysis of reinforced concrete, in: ASCE Task Committee on Finite Element Analysis of Reinforced Concrete Structures (Ed.), ASCE Special Publications, 1982.

[14] Chen W.F., Plasticity in reinforced concrete, New York: McGraw-Hill, 1976.

[15] Bangash M. Y. H., Manual of numerical methods in concrete, London: Thomas Telford Ltd., 2001.

[16] van.Mier J. G. M., Fracture processes of concrete: assessment of material parameters for fracture models, Boca Raton: CRC Press, 1997.

[17] Krajcinovic D., Mier J. G. M. van, Damage and fracture of disordered materials, New York: Springer, 2000.

[18] Schlangen E., Mier J. G. M. van, Experimental and numerical analysis of micromechanisms of fracture of cement-based composites, Cem. Concr. Comp. 1992. 14. 105-118.

[19] 王宗敏, 不均匀材料(混凝土)裂隙扩展及宏观计算强度与变形: [博士学位论文] 北京: 清华大学, 1996.

[20] 唐春安, 朱万成, 混凝土损伤与断裂-数值试验, 北京: 科学出版社, 2003.

[21] 王宝庭, 基于刚体-弹簧模型的混凝土微裂缝纹行为模拟, [博士学位论文], 大连: 大连理工大学, 1999.

[22] Salem H. M., Maekawa K., Pre- and postyield finite element method simulation of bond of ribbed reinforcing rars, Journal of Structural Engineering, ASCE. 2004. 130 (4). 671-680.

[23] Taljsten B., Plate bonding: strengthening of existing concrete structures with epoxy bonded plates of steel or fiber reinforced plastics, Lulea University of Technology, PhD thesis, 1994.

[24] Chajes M. J., Finch W. W. J., Januszka T. F., Thonson T. A. J., Bond and force transfer of composite material plates bonded to concrete, ACI Structural Journal. 1996. 93 (2). 295-230.

[25] Chajes M. J., Januszka T. F., Mertz D. R., Thomson T. A. J., Finch W. W. J., Shear strengthening of reinforced concrete beams using externally applied composite fabrics, ACI Structural Journal. 1995. 92 (3). 295-303.

[26] Bizindavyi L., Neale K. W., Transfer lengths and bond strengths for composite bonded to concrete, Journal of Composites for Construction, ASCE. 1999. 3 (4). 153-160.

[27] van Gemert D., Force transfer in epoxy-bonded steel-concrete joints, International Journal of Adhesion and Adhesives. 1980. 1. 67-72.

[28] Swamy R. N., Charif A., Shear adhesion properties of epoxy rein adhesives, Proc. International Symposium for Adhesive Between Polymers and Concrete., 1986 741-755.

[29] Kobatake Y., Kimura K., Katsumata H., A retrofitting method for reinforced concrete structures using carbon fiber, A. Nanni (Ed.), Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications Elsevier, Amsterdam, the Netherlands, 1993 435-450.

[30] Brosens K., van Gemert D., Anchoring stresses between concrete and carbon fiber reinforced laminates, Proc. 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Vol. 1, Sapporo, 1997 271-278.

[31] Hiroyuki Y., Wu Z., Analysis of debonding fracture properties of CFS strengthened member subject to tension, Proc. 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Vol. 1, Sapporo, 1997 284-294.

[32] Maeda T., Asano Y., Sato Y., Ueda T., Kakuta Y., A study on bond mechanism of carbon fiber sheet, Proc. 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Vol. 1. Sapporo, 1997. 279-285.

[33] Neubauer U., Rostasy F. S., Design aspects of concrete structures strengthened with externally bonded CFRP plates, Proc. 7th International Conference on Structural Faults and Repair, Vol. 2 ECS Publications, Edinburgh, Scotland, 1997 109-118.

[34] Chen J. F., Yang Z. J., FRP or steel plate-to-concrete bonded joints: effect of test methods on experimental bond strength, Steel and Composite Structures. 2001. 1 (2). 231-244.

[35] Yuan H., Teng J. G., Seracino R., Wu Z. S., Full-range behavior of FRP-to-concrete bonded joints. Engineering Structures, Engineering Structures. 2004. 26 (5). 553-564.

[36] Chen J. F., Teng J. G., Anchorage strength models for FRP and steel plates bonded to concrete., Journal of Structural Engineering, ASCE. 2001. 127 (7). 784-791.

[37] 谭壮, GFRP布加固混凝土梁受力性能的试验研究, [硕士学位论文], 北京: 清华大学, 2002.

[38] Yao J., Teng J. G., Chen J. F., Experimental study on FRP-to-concrete bonded joints, Composites Part B. Accepted. 2004.

[39] Yuan H., Wu Z. S., Interfacial fracture theory in structures strengthened with composite of continuous fiber,  Proc. Symposium of China and Japan, Science and Technology of 21st Century, Tokyo, Japan, 1999 142-155.

[40] Yao J., Debonding in FRP-Strengthened RC Structures, The Hong Kong Polytechnic University, Ph. D Thesis, 2004.

[41] Taljsten B., Defining anchor lengths of steel and CFRP plates bonded to concrete, International Journal of Adhesion and Adhesives. 1997. 17 (4). 319-327.

[42] Takeo K., Matsushita H., Makizumi T., Nagashima G., Bond characteristics of CFRP sheets in the CFRP bonding technique, Proc. of Japan Concrete Institute. 1997. 19 (2). 1599-1604.

[43] 赵海东, 张誉, 赵鸣, 碳纤维片材与混凝土基层粘结性能研究第一届中国纤维增强塑料(FRP)混凝土结构学术交流会论文集, 冶金工业部建筑研究总院, 北京, 2000.

[44] Ueda T., Sato Y., Asano Y., Experimental study on bond strength of continuous carbon fiber sheet, Proc. 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, Farmington Hills, Michigan, 1999 407-416.

[45] Nakaba K., Toshiyuki K., Tomoki F., Hiroyuki Y., Bond behavior between fiber-reinforced polymer laminates and concrete, ACI Structural Journal. 2001. 98 (3). 359-367.

[46] Wu Z. S., Yuan H., Hiroyuki Y., Toshiyuki K., Experimental/analytical study on interfacial fracture energy and fracture propagation along FRP-concrete interface, ACI International SP-201-8. 2001. 133-152.

[47] 任慧涛, 纤维增强复合材料加固混凝土结构基本力学性能和长期受力性能研究, [博士学位论文], 大连: 大连理工大学, 2003.

[48] Teng J. G., Zhang J. W., Smith S. T., Interfacial stresses in reinforced concrete beams bonded with a soffit plate: a finite element study, Construction and Building Materials. 2002. 16 (1). 1-14.

[49] Yang J. Z., Chen J. F., Proverbs D., Finite element modelling of concrete cover separation failure in FRP plated RC beams, Construction and Building Materials. 2003. 17. 3-13.

[50] Shen H. S., Teng J. G., Yang J., Interfacial stresses in beams and slabs bonded with thin plate, Journal of Engineering Mechanics, ASCE. 2001. 127 (4). 399-406.

[51] Smith S. T., Teng J. G., Interfacial stresses in plated beams, Engineering Structures. 2001. 23. 857-871.

[52] Taljsten B., Strengthening of beams by plate bonding, Journal of Materials in Civil Engineering, ASCE. 1997. 9 (4). 206-212.

[53] Malek A. M., Saadatmanesh H., Ehsani M. R., Prediction of failure load of R C beams strengthened with FRP plate due to stress concentration at the plate end, ACI Structural Journal. 1998. 95 (1). 142-152.

[54] Wong R. S. Y., Vecchio F. J., Towards modeling of reinforced concrete members with externally bonded fiber-reinforced polymer composite, ACI Structural Journal. 2003. 100 (1). 47-55.

[55] Wu Z. S., Yuan H., Niu H. D., Stress transfer and fracture propagation in different kinds of adhesive joints, Journal of Engineering Mechanics, ASCE. 2002. 128 (5). 562-573.

[56] Wu Z. S., Yin J., Fracture behaviors of FRP-strengthened concrete structures, Engineering Fracture Mechanics. 2003. 70. 1339-1355.

[57] Wu Z. S., Element-level study on stress transfer based on local bond properties, in: Technical Report of JCI Technical Committee on Retrofit Technology, 2003, 44-56.

[58] Lu X. Z., Jiang J. J., Teng J. G., Ye L. P., Finite element models for FRP-to-concrete bonded joints, Construction and Building Materials. Accepted. 2004.

[59] 陆新征, 江见鲸, 考虑不同破坏模式的二维混凝土本构模型, 土木工程学报. 2003. 36 (11). 70~74.

[60] 陆新征, 谭壮, 叶列平, 江见鲸., FRP-混凝土界面粘结性能的有限元分析, 工程力学. 录用. 2004.

[61] Dai J. G., Ueda T., Local bond stress slip relations for FRP sheets-concrete interfaces, Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003 143-152.

[62] Ueda T., Dai J. G., Sato Y., A nonlinear bond stress-slip relationship for FRP sheet-concrete interface, Proc. International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, Kyoto, Japan, 2003 113-120.

[63] Tanaka T., Shear resisting mechanism of reinforced concrete beams with CFS as shear reinforcement, Hokkaido University, Graduation thesis, 1996.

[64] Chaallal O., Nollet M. J., Perraton D., Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure, Canadian Journal of Civil Engineering. 1998. 25 (4). 692-704.

[65] JCI, Technical report of technical committee on retrofit technology, in: Proc. International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, Kyoto, Japan, 2003.

[66] Khalifa A., Gold W. J., Nanni A., Aziz A., Contribution of externally bonded FRP to shear capacity of RC flexural members, Journal of Composites for Construction, ASCE. 1998. 2 (4). 195-203.

[67] 杨勇新, 岳清瑞, 胡云昌, 碳纤维布与混凝土粘结性能的试验研究, 建筑结构学报. 2001. 22 (3). 36-42.

[68] Brosens K., Gemert D. van, Anchorage design for externally bonded carbon fiber reinforced polymer laminates, Proc. 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, Farmington Hills, Michigan, 1999 635-645.

[69] Lorezis L. de, Miller B., Nanni A., Bond of fiber-reinforced polymer laminates to concrete, ACI Material Journal. 2001. 98 (3). 256-264.

[70] Savioa M., Farracuti B., C.Mazzotti, Non-linear bond-slip law for FRP-concrete interface, Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003 163-172.

[71] Monti M., Renzelli M., Luciani P., FRP adhesion in uncracked and cracked concrete zones,  Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003.

[72] 陆新征, 江见鲸, 利用ANSYS Solid 65单元分析复杂应力条件下的混凝土结构, 建筑结构. 2003. 33 (6). 22-24.

[73] MSC.MARC, User's manual: MSC. Software Corporation, 2003.

[74] Rots J. G., Blaauwendraad J., Crack models for concrete: discrete or smeared? Fixed, multi-directional or rotating? HERON. 1989. 34 (1).

[75] 过镇海, 钢筋混凝土原理, 北京: 清华大学出版社, 1999, 108-109.

[76] Li Y. J., Zimmerman T., Numerical evaluation of the rotating crack model, Computers and Structures. 1998. 69. 487-497.

[77] Walraven J. B., Reinhardt H. W., Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subject to shear load, HERON. 1981. 26 (1).

[78] CEB-FIP, Model Code 90, Lausanne, 1993.

[79] Rots J. G., Kusters G. M. A., Nauta P., Variable reduction factor for the shear resistance of cracked concrete, in: TNO-report BI-84-33/68.8.2001, Rijswijk, the Netherlands, 1984.

[80] 康清梁, 钢筋混凝土有限元分析, 北京: 中国水利水电出版社, 1996.

[81] Bazant Z. P., Planas J., Fracture and size effect in concrete and other quasibrittle materials, Boca Baton: CRC Press, 1997.

[82] Zhu W. C., Teng J. G., Tang C. A., Mesomechanical model for concrete-Part I: Model development, Magazine of Concrete Research. Accepted. 2004.

[83] Teng J. G., Zhu W. C., Tang C. A., Mesomechanical model for concrete-Part II: Applications, Magazine of Concrete Research. Accepted. 2004.

[84] Buyukozturk O., Nonlinear analysis of reinforced concrete structures, Computers and Structures. 1977. 7. 149-156.

[85] Hognestad E., A study of combined bending and axial load in reinforced concrete members, in: University of Illinois Engineering Experiment Station, Bulletin Series No. 399, Bulletin No.1, 1951.

[86] Bazant Z. P., Instability, ductility and size effect in strain-softening concrete, Journal of Engineering Mechanics Division, ASCE. 1976. 102 (2). 331-344.

[87] Bazant Z. P., Cedolin L., Blunt crack band propagation in finite element analysis, Journal of Engineering Mechanics Division, ASCE. 1979. 105 (2). 297-315.

[88] Kwak H. G., Filippou F. C., Finite element analysis of reinforced concrete structures under monotonic load, in: Research report of Department of Civil Engineering, U.C. Berkeley, No. UCB/SEMM-90/14, 1990, 33-39.

[89] Rots J. G., Nauta P., Kusters M. A., Blaauwendraad J., Smeared crack approach and fracture localization in concrete, HERON. 1985. 30(1).

[90] ABAQUS, User's manual, in: HKS Corporation, 2001.

[91] Ritchie P. A., Thomas D. A., Lu L. W., Connelly G. M., External reinforcement of concrete beams using fiber reinforced plastics, ACI Structural Journal. 1991. 88 (4). 490-500.

[92] Saadatmanesh H., Ehsani M. R., RC beams strengthened with GFRP plates. I: experimental study, Journal of Structural Engineering, ASCE. 1991. 117 (11). 3417-3433.

[93] Triantafillou T. C., Plevris N., Strengthening of RC beams with epoxy-bonded fibre-composite materials, Mater Struct. 1992. 25. 201-211.

[94] Chajes M. J., Thomson T. A. J., Januszka T. F., Finch W. W. J., Flexural strengthening of concrete beams using externally bonded composite materials, Construction and Building Materials. 1994. 8 (3). 191-201.

[95] Sharif A. M., Al-Sulaimani G. J., Basunbul I. A., Baluch M. H., Ghaleb B. N., Strengthening of initially loaded reinforced concrete beams using FRP plates, ACI Structural Journal. 1994. 91 (2). 160-168.

[96] Heffernan P. J., Erki M. A., Equivalent capacity and efficiency of reinforced concrete beams strengthened with carbon fiber reinforced plastic sheets, Canadian Journal of Civil Engineering. 1996. 23. 21-29.

[97] Shahawy M. A., Arockiasamy M., Beitelman T., Sowrirajan R., Reinforced concrete retangular beams strengthened with CFRP laminates, Composites Part B. 1996. 27. 225-233.

[98] Takeda K., Mitsui Y., Murakami K., Sakai H., Nakamura M., Flexural behavior of reinforced concrete beams strenghened with carbon fiber sheets, Composites Part A. 1996. 27. 981-987.

[99] Arduini M., Tommaso A. D., Nanni A., Brittle failure in FRP plate and sheet bonded beams, ACI Structural Journal. 1997. 94 (4). 363-370.

[100] Garden H. N., Hollaway L. C., An experimental study of the influence of plate end anchorage of carbon fibre composite plates used to strengthen reinforced concrete beams, Composite structures. 1998. 42. 175-188.

[101] Grace N. F., Soliman A. K., Abdel-Sayed G., Saleh K. R., Behavior and ductility of simple and continuous FRP reinforced beams, Journal of Composites for Construction, ASCE. 1998. 2 (4). 186-194.

[102] Grace N. F., Sayed G. A., Soliman A. K., Saleh K. R., Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates, ACI Structural Journal. 1999. 96 (5). 865-874.

[103] Grace N. F., Abdel-Sayed G., Ragheb W. F., Strengthening of concrete beams using innovative ductile fiber-reinforced polymer fabric, ACI Structural Journal. 2002. 99 (5). 692-700.

[104] Ross C. A., Jerome D. M., Tedesco J. W., Hughes M. L., Strengthening of reinforced concrete beams with externally bonded composite laminates, ACI Structural Journal. 1999. 96 (2). 212-220.

[105] Bonacci J. F., Maalej M., Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams, ACI Structural Journal. 2000. 97 (5). 703-711.

[106] Nguyen D. M., Chan T. K., Cheong H. K., Experimental investigation on delamination of CFRP-concrete beams,  Proc. ICCMC/IBST 2001 International Conference on Advanced Technologies in Design, Construction and Maintenance of Concrete Structures, Hanoi, Vietnam, 2001.

[107] Rahimi H., Hutchinson A., Concrete beams strengthened with externally bonded FRP plates, Journal of Composites for construction, ASCE. 2001. 5 (1). 44-56.

[108] Brena S. F., Bramblett R. M., Wood S. L., Kreger M. E., Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer composite, ACI Structural Journal. 2003. 100 (1). 36-46.

[109] Chan T. K., Niall M., Strengthening of one-way slabs using carbon fibre plates: the effect of preload, in: CSE Research Bulletin No.14, Nanyang Technology University, Singapore, 2001.

[110]  方团卿, 碳纤维布在混凝土梁受弯加固中U形箍抗剥离性能的研究, [硕士学位论文],北京: 清华大学, 2002.

[111]  Shin Y. S., Lee C., Flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer laminates at different levels of sustaining load, ACI Structural Journal. 2003. 100 (2). 231-239.

[112]  Teng J. G., Smith S. T., Yao J., Chen J. F., Intermediate crack-induced debonding in RC beams and slabs, Construction and Building Materials. 2003. 17 (6-7). 447-462.

[113]  叶列平, 崔卫, 岳清瑞, 胡孔国, 碳纤维布加固混凝土构件正截面受弯承载力分析, 建筑结构. 2001. 35 (3). 3-5.

[114]  赵鸣, 赵海东, 张誉, 碳纤维片材加固钢筋混凝土梁受弯试验研究, 结构工程师. 2002. (2). 52-58.

[115]  Beber A. J., Filho A. C., Campagnolo J. L., CFRP in the strengthening of reinforced concrete beams, J. G. Teng (Ed.), Proc. the International Conference on FRP Composite in Civil Engineering, (CICE 2001) Elsevier Science Ltd., 2001. 391-398.

[116]  Ceroni F., Prota A., Experimental behavior of RC beams strengthened by FRP sheets, Juvandes L. and Faria R. Figueiras J. (Ed.), Proc. the International Conference Composites in Construction (CCC 2001) A.A.Balkema Publishers., Netherlands, 2001. 499-504.

[117]  Gao B., Leung W. H., Cheung C. M., J K, Kim, Leung C. K. Y., Effects of adhesive properties on strengthening of concrete beams with composite strips, J. G. Teng (Ed.), Proc. the International Conference on FRP Composite in Civil Engineering, (CICE 2001) Elsevier Science Ltd, 2001 423-432.

[118]  Tumialan G., Serra P., Nanni A., Belarbi A., Concrete cover delamination in reinforced concrete beams strengthened with carbon fiber reinforced polymer sheets,  Proc. the 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Maryland, USA, 1999 725-735.

[119]  Xiong G. J., Jiang H., Huang J. Z., Yang J. Z., Xie H. C., Behavior of concrete beams strengthened with hybrid carbon fiber-glass fiber sheets, J. G. Teng (Ed.), Proc. the International Conference on FRP Composite in Civil Engineering, (CICE 2001) Elsevier Science Ltd, 2001 407-414.

[120] Yi W. J., Huang H. M., Experimental study on the flexural behavior of RC beams strengthen with CFRP laminates, J. G. Teng (Ed.), Proc. the International Conference on FRP Composite in Civil Engineering, (CICE 2001) Elsevier Science Ltd, 2001 399-406.

[121] Arduini M., Nanni A., Romagnolo M., Performance of one-way reinforced concrete slabs with externally bonded fiber-reinforced polymer strengthening, ACI Structural Journal. 2004. 101 (2). 193-201.

[122] Quantrill R. J., Hollaway L. C., Thorne A. M., Experimental and analytical investigation of FRP strengthened beam response: Part I, Magazine of Concrete Research. 1996. 48 (177). 331-342.

[123] Meier U., Strengthening of structures using carbon fiber/epoxy composites, Construction and Building Materials. 1995. 9 (6). 341-351.

[124] Oehler D. J., Park S. M., Mohamed-Ali M. S., A structural engineering approach to adhesive bonding longitudinalplates to RC beams and slabs, Composites: Part A. 2003. 34 (12). 887-897.

[125] Smith S. T., Teng J. G., FRP-strengthened RC structures, I: review of debonding strength models, Engineering Structures. 2002. 24 (4). 385-395.

[126] Smith S. T., Teng J. G., FRP-strengthened RC structures, II: assessment of debonding strength models, Engineering structures. 2002. 24 (4). 397-417.

[127] Bencardino F., Spadea G., Swamy R. N., Strength and ductility of reinforced concrete beams externally reinforced with carbon fiber fabric, ACI Structural Journal. 2002. 99 (2). 163-171.

[128] Aprile A., Spacone E., Limkatanyu S., Role of bond in RC beams strengthened with steel and FRP plates, Journal of Structural Engineering, ASCE. 2001. 127 (12). 1445-1452.

[129] Niu H. D., Interfacial fracture mechanisms and performance evaluation of RC structural system strengthened with FRP sheets, Ibaraki University, Doctor thesis, 2002.

[130] Ferretti D., Savoia M., Non-linear model of R/C tensile members strengthened by FRP-plates, Engineering Fracture Mechanics. 2003. 70. 1069-1083.

[131] Sato Y., Mechanical characteristics of the retrofitted members, in: Technical Report of JCI Technical Committee on Retrofit Technology, 2003, 62-78.

[132] Wu Z. S., Niu H. D., Shear transfer along FRP-concrete interface in flexural members. J Materials, Con. Struct. Pavements, JSCE. No.662/V.49. 2000. 231-245.

[133] 黄羽立, 叶列平, 碳纤维布受弯加固RC梁粘结性能的非线性有限元分析, 工程力学. 2003. 21 (2). 54-61.

[134] Belytschko T., Lu Y. Y., Element Free Galerkin method, Int. J. Numer. Methods. Engrg. 1994. 37. 229-256.

[135] 寇晓东, 无单元法追踪结构开裂及拱坝稳定分析, [博士学位论文] 北京: 清华大学, 1998.

[136] Liu G. R., Mesh Free Methods: Moving Beyond the Finite Element Method, Boca Baton: CRC Press, 2002.

[137] 陆新征, 杨宁, 江见鲸, 利用无网格伽辽金方法分析结构大变形问题, 结构工程师. 2003. 66 (增刊). 18-22.

[138] Al-Sulaimani G. J., Sharif A. M., Basunbul I. A., Baluch M. H., Ghaleb B. N., Shear repair for reinforced concrete by fibreglass plate bonding, ACI Structural Journal. 1994. 91 (3). 458-464.

[139] Kachlakev D. I., Barnes W. A., Flexural and shear performance of concrete beams strengthened with fibre reinforced polymer laminates, Proc. 4th International Symposium on Fibre Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, 1999 959-971.

[140] Kage T., Abe M., Lee H. S., Tomosawa F., Effect of CFRP sheets on shear strengthening of RC beams damaged by corrosion of stirrup, Proc. 3rd International Symposium Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 1997. 443-450.

[141] Khallifa A., Nanni A., Improving shear capacity of existing RC T-section beams using CFRP composites, Cem Concr Compos. 2000. 22. 165-174.

[142] Mitsui Y., Murakami K., Takeda K., Sakai H., A study on shear reinforcement of reinforced concrete beams externally bonded with carbon fibre sheets, Compos Interfaces. 1998. 5 (6). 285-295.

[143] Sato Y., Ueda T., Kakuta Y., Tanaka T., Shear reinforcing effect of carbon fibre sheet attached to side of reinforced concrete beams,  El-Badry MM (Ed.), Advanced Composite Materials in Bridges and Structures, 1996 621-627.

[144] Triantafillou T. C., Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites, ACI Structural Journal. 1998. 95 (2). 107-115.

[145] Uji K., Improving shear capacity of existing reinforced concrete members by applying carbon fibre sheets, Trans Jpn Concr Institute. 1992. 14. 253-266.

[146] 吴刚, 安琳, 吕志涛, 碳纤维布用于钢筋混凝土梁抗剪加固的试验研究, 建筑结构. 2000. 30 (7). 16-20.

[147] Hutchinson R. L., Rizkalla S. H., Shear strengthening of AASHTO bridge girders using carbon fibre reinforced polymer sheets,  Proc. the 4th International Symposium on Fibre Reinforced Polymer Reinforcement for Reinforcement Concrete Structures ACI, 1999 945-956.

[148] Khalifa A., Tumialan G., Nanni A., Belarbi A., A. Shear strengthening of continuous reinforced concrete beams using externally bonded carbon fibre reinforced polymer sheets,  Proc. the 4th International Symposium on Fibre Reinforced Polymer Reinforcement for Reinforcement Concrete Structures ACI, 1999 995-1008.

[149] Sato Y., Ueda T., Kakuta Y., Ono S., Ultimate shear capacity of reinforced concrete beams with carbon fibre sheet,  Proc. the 3rd SymposiumNon-Metallic (FRP) Reinforcement for Concrete Structures, Japan, 1997 499-505.

[150] Taerwe L., Khalil H., Matthys S., Behaviour of RC beams strengthened in shear by external CFRP sheets, Proc. 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan, 1997 483-490.

[151] 任海东, 黄承逵, 于建, 玻璃纤维布用于加固钢筋混凝土梁抗剪性能研究, 混凝土. 2003. (5). 35-37.

[152] Mutsuyoshi H., Ishibashi T., Okano M., Katsuki F., New design method for seismic retrofit of bridge columns with continuous fiber sheet-performance-base design., Proc. 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. ACI, Marland, 1999. 229-241.

[153] Araki N., Matsuzaki Y., Nakano K., Kataka T., Fukuyama H., Shear capacity of retrofitted RC members with continuous fiber sheets., Proc. 3nd International Symposium for Non-Metallic (FRP) Reinforcement for Concrete Structures Japan Concrete Institute, Sapporo, Japan, 1997 512-522.

[154] Funakawa I., Shimono K., Watanabe T., Asada S., Ushijima S., Experimental study on shear strengthening with continuous fiber reinforcement sheet and methyl methacrylate resin, Proc. 3nd International Symposium for Non-Metallic (FRP) Reinforcement for Concrete Structures Japan Concrete Institute, Sapporo, Japan, 1997 475-482.

[155] Ye L. P., Yue Q. R., Zhao S. H., Li Q. W., Shear strength of reinforced concrete columns strengthened with carbon-fiber-reinforced plastic sheet, Journal of Structural Engineering, ASCE. 2002. 128 (12). 1527-1534.

[156] Chen J. F., Teng J. G., Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: fiber reinforced polymer rupture, Journal of Structural Engineering, ASCE. 2003. 129 (5). 615-625.

[157] Chen J. F., Teng J. G., Shear capacity of FRP-strengthened RC beams: FRP debonding, Construction and Building Materials. 2003. 17. 27-41.

[158] 张子潇, 叶列平, 陆新征, UFRP加固钢筋混凝土梁受剪剥离性能的有限元分析, 工程力学. 录用. 2004.

[159] 郝震, 曹双寅, 翟瑞兴, 方志保, 外贴CFRP 加固梁斜截面受力性能的分析和计算, 工业建筑. 2004. 34 (2). 82-84.

我们的实验室

抗倒塌专业委员会